skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wright, A J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The non-local spin valve (NLSV) is a useful device for studying spin transport at nanoscopic dimensions, with potential technological applications. Despite this appeal, background signals, unrelated to spin diffusion, often hinder the interpretation of spin signals in NLSVs and could compromise performance in future devices. In this paper, we comprehensively investigate these background signals in all-metallic NLSVs fabricated from a variety of ferromagnetic (FM; N i 80 F e 20 , Fe, Co) and nonmagnetic (NM; Al, Cu) metals. We demonstrate that a background signal emerges in AC measurements, with contributions from both current spreading and thermoelectric effects, with a complex dependence on both temperature and FM injector-detector separation. Despite the complexity of these dependencies, we demonstrate excellent agreement with three-dimensional finite-element modelling that accounts for current-spreading and thermoelectric effects, across a wide range of temperatures, FM separations, and FM/NM pairings. This approach additionally offers a means to estimate the Seebeck coefficients for the tested FM/NM pairings, providing further insight into the charge and heat flow in such nanoscopic spintronic devices. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract As global temperatures rise, droughts are becoming more frequent and severe. To predict how drought might affect plant communities, ecologists have traditionally designed drought experiments with controlled watering regimes and rainout shelters. Both treatments have proven effective for simulating soil drought. However, neither are designed to directly modify atmospheric drought. Here, we detail the efficacy of a silica gel atmospheric drought treatment in outdoor mesocosms with and without a co‐occurring soil drought treatment. At California State University, Los Angeles, we monitored relative humidity, temperature, and vapor pressure deficit every 10 min for 5 months in bare‐ground, open‐top mesocosms treated with soil drought (reduced watering) and/or atmospheric drought (silica dehumidification packets suspended 12 cm above soil). We found that silica packets dehumidified these mesocosm microclimates most effectively (−5% RH) when combined with reduced soil water, regardless of the ambient humidity levels of the surrounding air. Further, packets increased microclimate vapor pressure deficit most effectively (+0.4 kPa) when combined with reduced soil water and ambient air temperatures above 20°C. Finally, packets simulated atmospheric drought most consistently when replaced within 3 days of deployment. Our results demonstrate the use of silica packets as effective dehumidification agents in outdoor drought experiments. We emphasize that incorporating atmospheric drought in existing soil drought experiments can improve our understandings of the ecological impacts of drought. 
    more » « less
  3. Abstract Climate models predict at least another 1.5°C warming in the next 75 years. This warming drives increased atmospheric drying and a global increase in the severity and duration of ecological drought. Vegetation has the capacity to reduce microclimate temperatures and atmospheric aridity.All species of plants create shade, move water, evapotranspire, humidify the air around them, and affect the temperature and vapour pressure deficit of the environment. Vegetation can thus act as a nature‐based solution to warming and atmospheric drying.These microclimate modifications likely depend on the traits, functional groups and diversity of the plant community. Vegetative feedbacks on microclimate are strong enough to buffer some plants against the negative impacts of warming and drying (e.g. facilitation).Synthesis: Here we present, for the first time, a trait‐based framework that can be applied across study systems for assessing microclimate temperature and humidity under vegetation. This framework includes multiple new hypotheses for future work in this area. We emphasize that a systematic examination of trait–microclimate relationships will enable us to use vegetation as a nature‐based solution to warming and atmospheric drying in a changing climate. 
    more » « less